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X-ray Diffraction by Close-Packed Crystals with 'Growth-' and 'Deformation or 
Transformation Stacking Faults' Assuming  an 'n-Layer Influence' 

BY 1~. GEVERS 

Laboratorium voor Kristalkunde, Rozier 6, Gent, Belgium 

(Received 22 February 1954 and in revised form 20 Apri l  1954) 

The general theory is developed of the X-ray diffraction effects exhibited by close-packed crystals 
containing both 'growth-' and 'deformation or transformation stacking faults' .  

A general 'n-layer influence' is postulated for the distribution of the 'faults '  of the first and also 
for those of the second type. 

This means that:  (1) the probabili ty cq for a layer to be k-arranged in the original pattern of 
close-packed layers, depends on the arrangement of its n predecessors; (2) the probability fli for 
a layer to be a 'deformation or transformation stacking fault '  depends on the arrangement of 'cor- 
rect' and 'fault '  layers in the sequence of its n predecessors. A general expression can then be 
derived for the reciprocal-lattice X-ray intensity distribution as a function of the 2 ~-~ parameters ai 
and the 2 n parameters flj. 

The formulae are given for the special cases (a) an irregular pattern in which the 'faults of the 
second type'  are randomly distribated, or are not present; (b) an irregular pattern obtained by 
introducing 'faults of the second type'  into an hexagonal or cubic close-packed pattern with ran- 
domly distributed 'faults of the first type'  ; (c) an irregular pattern obtained by introducing 'faults of 
the second type' into a regular cubic close-packed pattern. :For the last case we give the general 
expression for the X-ray intensity, as it differs from that  which covers all the other eases. 

1. Introduction 

1. I t  has been proved (Jagodzinski, 1949) tha t  the  
X- ray  in tens i ty  diffracted by  close-packed crystals 
with 's tacking faults '  is 

sin ~ ½N1A1 sin ~" ½Ns, A~ 
I = IF I  ~- 

sin 9" ½A 1 sin ~ ½A~. 

× [! 3 2Q sin~ ½NaAa CrNs(1-x~) 
• sin~ ' ½A a + ( I - Q )  .~ 1--2-~x~-c~ A-~-a; x~J ' 

(1)  

where xr are the roots of a characteristic equation, 
and where the C,'s are the solution of the system 

.~  CrXr m = Prn--½ . (2) 
r 

2. In  this  article we shall  calculate the characteristic 
equat ion in the general case of an 'n- layer  influence'  
for both types of ' faults '  (Gevers, 1954a). We consider 
a close-packed crystal  with i r regular ly stacked layers, 

grown so tha t  an 'n- layer  influence'  exists. As described 
in a previous article (Gevers, 1954b), any  layer  can 
be the last  of a succession of n layers, which m a y  be 
arranged in 2 '~-2 = 41 ways at. These can be numbered  
so tha t  we have:  

a 2 i _ a _ _ _ - - - +  a i prob• ( 1 - ~ i _ ~ ) ,  (3a) 

(i=1 ..... 20(~=0,1) - - - ~  ai+~.z prob. ~2i-a, (3b) 

where the a2i_a's are the 41 t ransi t ion probabil i t ies 
(Gevers, 1954b, formulae (3) and (5)). 

Suppose now tha t  'deformat ion or t ransformat ion  
stacking faul ts '  (Gevers, 1954a) are introduced in this  
irregular pat tern.  We shall  consider here the  general  
case tha t  there is a general 'n- layer influence'  for the  
dis t r ibut ion of these ' faults ' .  This means:  n layers can 
be arranged, in sequences of 'correct '  (C) or ' faul t '  
(F) layers, in 2 n =  16l ways aJ. For  a layer  which 
is the last  of a series of n layers in an  a~ a r rangement  
(in C- and F-layers)  the  probabi l i ty  fl~ of its being 
followed by  a 'deformation or t ransformat ion stacking 
faul t '  will depend on tha t  a r rangement  a~. The 16l 
ways aJ can be numbered  in a manner  completely 
analogous to the one we used to number  the ai-ways. 
Consequently we have:  

---~ aJ prob. (1-fl2s_,,), (4a) 
a2]_~ 

(j=l ..... s~(,= 0,1) ----> aJ+ sl prob. f12i-~ • (4b) 

On introducing 'faults of the second type '  into the  
pa t te rn  a l ready dis turbed by  ' faul ts '  of the first type,  
we obta in  a succession of close-packed layers in which 
a given layer  can be the last of the sequence of n-layers 
in one of the 81×41=3219 arrangements  ai(~=li=l . . . .  ..... 4zlsl~J- 

We shall  say tha t  n successive layers in the irregular  
stacking, result ing from the presence of ' faul ts '  of 
both types, are in an ai-arrangement  , if (1) these 
n-layers were ai-arranged in the pa t te rn  exist ing 
before the int roduct ion of the ' faul ts '  of the  second 
type;  (2) these n-layers form, after tha t  introduction,  
an ai-sequence of C and F layers. 

If  (3) and (4) are taken into account, the succession 
of the close-packed layers is given by  the rule: 
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i :~ a{ prob. (1-~.i_a)(1-f12~_~), (5a) 

a 2 i - ~  ] > ai+S~prob. ( 1 - - 0 ~ 2 i _ 2 ) f l 2 i _ ~ ,  (5b) 
2~--2 

(j=l(i=i . . . . .  . . . . .  2/)(2=0,1).800 =0, :). 1_-+ ai+2z prob. 0¢2i_2(1 -~2i_p) , (56)  

- ~  af+Sti+2l prob. O~2i__A~2i__/~ . (5d) 

3. Let W{ be the probability that  a given layer is 
in an ai-arrangement with its ( n -1 )  predecessors, and 
Pm the probability that  two layers, m layers apa~,  
are in the relationship A ( B ,  C ) . . . A ( B ,  6'), while pm(!) 
will be the partial probability that  the last of these 
two layers (layer 0 and layer m) is in the arrangement 
a i. Then we have 

41 16l 
~Y: ~ Wi = 1 (6a)  
i = 1 ] = 1  

4l 16/ 

and P m =  ~,  ~ Pro({) • (65) 
i = 1  ]=1  

4. With the aid of (5) we obtain: 

1 1 
W{ = Z Z W~l:~(1-~_~)(1-f l2~_.) ,  (7a) 

2 = 0 / ~ = 0  

1 1 
W{ +St = 2 Z w e i - " ( 1 - c ~ i _ a ) f l ~ i _ . , ,  2~-a , (7b) 

2=0  p=O 

1 1 
Wi+2~ = ~ ~ '  W~i-~o~i-~(1-flei-u), (7c) 

2=0  tz=O 

1 1 
Wi+ 8~ W2~-~ o~ ~ (7d) ~+2~ = ~ . ~  ~.i-~ 2i-~'~4-~," 

2 = 0 / 2 = 0  

The expressions (7) and (6a) form a system which 
enables us to calculate w~ti=~ . . . . .  :6~ rr ~ / ~ / = l ,  4l  l" 

2 .  C a l c u l a t i o n  o f  Pm 

1. If we remember that  a 'deformation or transforma- 
tion stacking fault '  changes the arrangements (h or k) 
of the layer in which it occurs and of the next layer 
(Gevers, 1954a), we may remark that  the last layer 
of each of the arrangements 

aSr(."'..hate ), arS+l~t(:.... FFhh ) ,  aSr+Z(..'" :cat) , aS+l~tr+t ~..t"" ~ ) ,  

a s + 4 t t . . . F C  a S + S i t . . . O F  as+4l[. . .kk'FC), 
r+~. l~ . . .hk  ) ,  r+2l~. .1,k ) ,  ~'r+31 L .  

a,+Stt. . .cF t,=:,..::~), 
r+31L . . k k  ) ~r=l ,  

is h-arranged with its two predecessors, while in all 
other arrangements this layer is k-arranged. 

2. The layer m can be the last in any one of the fol- 
lowing arrangements : 

as(a.s+121 s aS+12l  aS+41 aS+8l  a s + 4 l  
( 1 ) - ~ , - ~  , at+l ,  ~+z , ,+2t, ~+2z, ~+3z, 

dS+81, s = l  . . . . .  4 l ) .  
r+31! ( r = l , . . . ,  

Each of these terminates with an h-arranged layer. 
Layer m will be (like the zero layer) an A layer if 
layer (m-2)  is also an A terminating an arrangement 
a4S-~, iv=o,  1, 4~_~=0,1,~:aa), and layer ( m - l )  terminates an ar- 
rangement 

a 2 S - a  l a 2 S + 8 l - °  ~ 2 s - °  a 2 s + 8 l - °  a 2 s + 8 l - a  a 2 S - a  
2r-- O~ 2r--@ , t~2r+2l--o, ~2r+2l--0  ~ 2r--~ , 2r--@, 

a 2 s + 8 l - a  a 2 S - a  , , 0=0  or l if e=O, : or 2, 3) .  
2r+2/--0,  2r+21--01 ~°=0 ox 1 if v=O, or 2, 

So we have, if we take (5) into account: 

3 3 
p~(~)  .~ .~7 _ ,4~-v, (I-~4~-~)(1 - f14~ - , )  (1 -o¢2~_Q)(1 -f lg .~_:)  = "Pro--2 ~4r--e) • " ' 

e=O v=O 

3 3 
p ro ( s -12 / )  2 2 - -  , 4 s - v ,  ( l _ _ o ¢ 4 r _ e ) f l 4 s _  v ( l _ _ O ~ 2 r _ o ) f l 2 s + 8 1 _  a ~-- "l)rn-- 2 (4r--e) " " ' 

e~---O v=O 

3 3 

Pm (r +t) .~, .,~ _ ,as-v, s = , P m _ 2 t 4 r _ d . O ~ 4 r _ e ( l _ _ f l a s _ v ) . ( l _ _ ~ X Z r + 2 l _ e ) ( 1 - - f l 2 s _ o )  ' 
e=O v=O 

3 3 

P m  ~r+l ] " ' 
~=0 v=O 

3 3 

F m  ~ r+2l] 
e=O v=O 

3 3 
rp [S+81~ M 14s--v, 

m~r+2tJ ~ ~ (1- -O¢4r_e)  ( 1 - - f l 4 s _ v )  O~2r -o f l2 s -a  = "13m--2 (4r--e] • " ' 
e~-O v=O 

3 3 

= "ldm--2 (4r--e) O¢4r--e~4s--v" 0¢2r+2/--0(1 - - ~ 2 s + 8 l - - a )  Fra kr+3l! " ' 
e=O v=O 

3 3 
p Is+8l~ _ 14s--v, 

m~r+3l!  = 2 2 / ) m - 2  t 4 r - e / "  O ~ 4 r - e ( 1 - - f l 4 s - v ) ' O ; 2 r + 2 l - o f l 2 s - a  
e=O v=O 

( r =  1, . . , 1 ;  s =  1 , . . . , 4 1 ;  e = 0 , 1 , 2 , 3 ;  v = 0 , 1 , 2 , 3 ;  ~ = 0  or 1 if e = O ,  1 or 2,3" 
a = 0  or 1 if v = 0 , 1  or 2 ,3 ) .  

(8a) 

(8b) 

(8c) 

(8d) 

(8e) 

(8f) 

(8g) 

(8h) 
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(2) aS+4l(aSr +sl, ,s+4l ,,s+Sl a s r~s+121 s 
~Vr+l , '~rTl , r+2l, '~r+2l , ar+3l, 

aS+121~ [ s= l  . . . . .  4l) 
r+3l ] kr=l, ., • 

Each of these terminates with a k-arranged layer. 
Their probabilities 

WS+4~(WrS+S~, w,+4~ ws+s~ "" r+l ~ "" r+g ~ WSr+2l, l/~rs+12/ W s  ws+12l~ 
"' r+21 , r+3l, "" r+3l / 

depend on the following possibilities: 

(a) the layer m is an A-layer; 
(b) l~yer ( m - l )  is an A-layer arranged as 

a 2 s + S / - g l . 2 s - g  n2s+8/-/4 ~2s-p  ~2s-~_  a2S+Sl-/z 
2,--A k~2r--l, ~2r+2l--t, ~2r+2/--1, ~2r--~, 2r--A 

"~,+21--~, ~2,+~.1--t' (~=O', 1) 

and is followed by a layer m in the desired arrangement 
a r S + 4 l ( . . . ) ;  

a4S-v (c) layer (m--2) is an A-layer arranged as a,_~ 
v=O, 1, 2, 3~ 

(~=0,1, 2, 32 

followed by a layer ( m - 1 )  arranged as 

a2S+sl-o la2s-a ~2s+8/-o  ~.2s-a -2s -a  r~2s+8/--a a2s--a 
2r--~ k~2r--~ U'2r+21--q~ ~2r+2/--~ t¢2r--~, W2r-- 0 ~ ~2r+2/--0~ 

a2s+s/-a~ a=0 1 if v=O 1 2 3 
~+21--0, (o=0 or or 2; 3) . or  1 if  ~=0 ' ,  1 or 

and by a layer m arranged in the desired arrangement 
a r S + 4 / ( . . . ) .  

If we take this into account, and also (5), we have: 

3. The expressions (8), (9) and (6b) form a linear 
system which has a solution of the form 

P~({) c0(i) + Z c,(i)x~, (10a) 

Pm = Co + Z c,~ , (lOb) 
r 

where x, are the roots of a characteristic equation. 
This equation can be found in the usual way (Gevers, 
1952, 1954a) by substitution of the formulae (10) into 
the system. We obtain then the equation" 

det. ~ = 0 ,  (11) 

where the matrix ~ is 

= x 2 ~ + x ~ ( ~ + ~ ) + ~ ( G - H )  2 , (12) 

where (D, ~, ~,  ~ ,  ~75 are matrixes of order 16/, of which 
the elements are themselves matrixes of order 41. 

is a diagonal matrix with elements equal to E,  
if E is the unit matrix of order 4/; 

(D is a diagonal matrix with elements (/)~ so ¢hat" 

~)~= G(i= 1, . . . ,  4/), (D~=H(i = 4 / +  1 . . . .  ,8/), 

(D~=H(i=8/+ 1, . . . ,  12l), (D~=G(i= 12[+1, . . . ,  16l) 

if G and H are the matrices we constructed in our 
previous article (Gevers, 1954b, §§ 2, 4); 

is a diagonal matrix with elements equal to 
(G-H)(G+H);  

1 1 
WS+41 = 29m(s+4l) + ~ ,  ~ l"ra-l~ ~2r-A/2s+81-P~] . (1 - -  0~2r_). ) (1 - - ~ 2 s + 8 / - p )  

).=0 p=O 
3 3 

+ 2  4~-~ 2 pm_~ (4r_~) • (1 - ~4,_,)~4s_,. (1 -- 0¢2,_0) (1--~2s+sz_o), (9a) 
e ~ O  v=O 

1 1 3 ' 3  

= /48-v~ ( l__~X4r_~)( l__~4s_v)  (l__~X2r_O)fl2s_o, (9b)  WSr+8l pm(Sr+8l)-{-~ "J~rPra-l( ISr-~) ' ( l - -o~2r-~)~2s-~ + ~ ~ Pm-2 t l r - e ] "  
,t=0 p=O e=O v----O 

1 1 
Ws+4/r+l = ~'m~,+z~ ,s+4h/+ 2 2 Pm--ll2S+Sl--~i2r+2l--t]. (1 --0~2,+2/__t) (1 --~2s+8/--/~) 

~=0 /~=0  
3 3 

+ 2 4,-~ 
e = O  v=O 

1 1 3 3 
Wr~+8~ ,~ Is+8h+ v +z t'm~,+~ , ~ 2 pm_l , zr+ .a_X, .~ l - -~C2r+2Z_Xjp2s_  ~ = 2 P m - 2 ( 4 r - , ) "  ~X4r-~( l - -~4s-v)"  (1 --O~2r+21_O)~2s_a , (9d) + 2  4s--v 

I=0 /~=0 e=O v=O 

1 1 3 3 

W~+2z P~(,+2,)+ 2 2 2~-~  = s Pm--l(2r--l).O~2r--A(1--~2s--p) + 2  2Pm-2(Z-;).(l--oqr_,)(l--~4s_~).~2r_~(l--~2,_o) , (9e) 
I=0 p=O e=O v=O 

1 1 3 3 
Wrs+12l ~ is+121~ .3 c ~ 12s+8l_l~ + ~  2 ~  14s--~ 

+2~ = ~ , + ~ ,  ~ - - ~ - , ~ 2 , - ~  , . ~ 2 , - ~ z ~ + s ~ - ,  ).=0 /~=0 e=O v=O Fm-2(4r -*] ' (1 -OQr-e ) f l 4 s - v 'O~2r -q f l2 s+81-° '  ( 9 f )  

1 1 3 3 
s 2s--/~ 

W~+3l P m ( r + 3 l ) + ~  ~ Pm- l (2 r+2 l - l )  ~ x 2 , + 2 1 - 1 ( 1 - - ~ 2 s - ~ ) + ~  as-,, ~--" " 2 Pm_2(4r_e).O64r_e(l--~4s_v).O~2,+21_o. (X--~2s_o), (gg) 
1=0/~=0 ~=0 v=O 

1 1 3 3 
W r  s+12l a~ IS+12l~ 12s+8l--~ 14s_v~ 

+3l = ~'m~,+3l ] + 2 2 Pm--l~2r+21--M. O~2r+21--l~2s+81--1~ -~ 2 2 Pro--2 ~4r--,/" OQr--,flas--~. O~2r+21--o~2s+81--o (9h) 
) . = 0  / ~ = 0  e = O  * , = 0  " 

( r = l , . . . , 1 ;  s = 1 ,  . .  ., 4/; ) . = 0 , 1 ;  # = 0 , 1 ;  e = 0 , 1 , 2 , 3 ;  v - - - 0 , 1 , 2 , 3 ;  
= 0  or 1 if e = 0 , 1  or 2, 3; a = 0  or 1 if v = 0 , 1  or 2, 3). 
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and ~ are obtained if, in the expression for G 
and H, we change each (1-cq)  into (1 - f l i )E  and each 
c~i into fliE. 

4. With  the aid of (6a) and (7) i t  can be proved tha t  
C O = ~ and the C,'s can be calculated by solving the 
system (2). The values of P,n(m = 0, 1, . . . )  may  
indeed be calculated directly with the aid of {8), (9) 
and (6b) if we take into account tha t  

Po(i) = Wi and p~(!) = 0 ( j ' l ,  . . . ,  16/; i = 1, . . . , 4 / ) .  

5. I t  has been stated and proved (Gevers, 1953a, 
1954a) how the expression 

¢~(1-x~) 

~ l - 2 x ~  cos Aa+x ~ 

of the formula (1) can be calculated without solving 
the characteristic equation (11) and the system (2), 
and how an equivalent equation can be calculated 
from the measurements of the diffuse X-ray intensity. 

6. If there is an 'n-layer influence' for the 'faults 
of the first type '  and an 'm-layer influence' for ' those 
of the second type ' ,  we have supposed tha t  n = m. 
This assumption does not restrict the generality of the 
calculation, since an 'n-layer influence' can always be 
reduced to an ' ( n - p ) - l a y e r  influence' by  taking 

~ 1 =  ~ 9 - ~  . . .  ---- 0¢Sp; . . . ;  

0 ¢ 2 i p . 4 _  1 = 0 ~ 2 i p . 4 _  2 ~ . • • = 0¢2(i_4_1)p; . . . .  

3. Special  cases  

1. Suppose i l l = f i g =  . . .  = /~ l~ l= f l .  This means 
tha t  the 'deformation or transformation stacking 
faults '  are randomly distributed. With  this simple 
assumption, and making use of the properties of 
determinants and matrices, we can prove tha t  equation 
(11) can then be brought into the form 

det. C1=0 if 
C~=x2E+xG+[1-3f l (1- f l ) ] (G-H)(G+H).  (13) 

I t  is easily verified tha t  the formulae given by Wilson 
(1942), Hendricks & Teller (1942) (fl = 0, n = 2), 
Jagodzinski (1949) (fl = 0, n = 3), (Gevers (1952) 
(fl = 0, special cases n = 4 and n = 6), Gevers (1954a) 
(fl = 0, n = 4), Kakinoki & Komura (1952) (fl = 0, 
n = any number), Gevers (1954b) (fl = 0, n = any 
number), Paterson (1952) (fl # 0, n = 2, a = 1), Ge- 
vers (1953b, I954a) (fl # 0, n = 2), Gevers (1954a) 
(fl # 0, n = 3, al  = 1, a~ = 0), Gevers (1954a) (fl # 0, 
n = 4 ,  a 2 =  1, a a =  1, a 4 = 0 )  and Gevers (1953c) 
( f l # 0 ,  n = 6 ,  c % = a ~ = a l l =  1, a ~ = ~ 1 4 = 0 )  can 
be calculated with the aid of (13). 

2. If the original pa t tern  (and by this we mean the 
pat tern  as it was before the introduction of the 
'deformation stacking faults') is a cubic or hexagonal 
close-packed one with randomly distributed 'growth 
stacking faults' ,  it can be proved that  equation (11) 
can be brought into the form: 

det. C2=0 if Cs= 
xSE '+xD' (G '+H' )+(2~- I ) (G ' -H ' )  2 (14) 

o r  

det. Cz=O if C a = xSE' +x~(G' +H ') 
+ ( 2 ~ -  1) (¢G'+e*H') (¢*G+eH') (~ = exp [ - i ~ ]  , (15) 

where E', D', G', H' are matrices of order 16/; 
E' is the unit  matr ix;  

t 
D' is the diagonal matr ix  with Dii = o~; 1 - ~ ;  1 - ~ ;  
for i=1 ,  . . . ,  4/; 4 /+1,  . , 8/; 8/+1, . . . ,  12/; 

12/÷1, . . . ,  16l); 
G' and H' are constructed as ~j~ and ~ ,  but  the 

elements (1-f l i)E and fliE have to be changed into 
l--fli and fli. 

3. We consider now the important  case of a cubic 
close-packed crystal containing 'deformation or trans- 
formation stacking faults '  (with a general 'n-layer in- 
fluence'). The characteristic equation is given by (15), 
making a = 1. We can prove tha t  this equation can 
be split into the two equations det. C~ = 0 and 
det. C~' = 0 if 

C~ = xE ' - eG ' -~*H '  (16a) 
and 

C~' = x E ' - ~ * G ' - ~ H ' .  (16b) 

The roots of (16a) and (16b) will be" 

Xr = Qr exp (±iOr) , (17a) 
and we can put" 

C, = Ar±iB, .  (17b) 

In  this case the X-ray  intensity I is not given by for- 
mula (1). Jagodzinski (1949) considered only the case 
in which the probabilities (pB and pC) of two layers, 
m layers apart,  being in the relationship A(B, C) 

• . .B(C, A) or A(B, C) . . .C(A ,  B), are equal, while 
this is obviously not so in the case we are considering. 

We can, however, prove tha t  pB (and pc)  are given 
by (10b) and (17a) if mO is changed into (mO-§zr) 
and (mO+-~:~). I t  is easily verified tha t  this is so in 
the simple case which Paterson (1952) considered. 

By generalizing Paterson's (1952) method of cal- 
culating I ,  we obtain 

s sins ½ N 1 A 1  sins ½NsA~ {1+2Q sin 9 ½N3A a 
I =  IF I s-indiA-11 " sin ~-~A~ _ 3 " sin ~½Aa 

r ( l - -  ~) ) ±  2Br sin (Aa±Or)]~ 
+ ( I -Q)~Na[A1-2~r~CCS~a~) -+-~r r  ' (18) 

±for H - K  = ±1 (mod. 3) .  

The relations between the hexagonal indices H, K, L 
( A  1 = 2zH,  A 2 = 2:rK, A a = ]:rL) and the usual cubic 
indices h, k, 1 are given by Paterson (1952). 

4. I is given by formula (1) except when 'faults of 
the second type '  are introduced into a regular pa t tern  
for which pB # PC. 

This was so in the case considered in 3, but  also 
occurs when the regular stacking is of the SiC 15R- 
type (hkkhk-type). The calculations for the lat ter  case 
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have also been done on the simple assumption fll = 
fl~ = . . .  = fl (Gevers, 1953c). 

The author is grateful to Prof. W. Dekeyser for the 
stimulating interest taken in this work, which is par t  
of a research programme (C.E.S.) supported by  
I.R.S.I.A. 
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X-ray atomic form factors for carbon, nitrogen and oxygen have been computed from Hartree- 
Fock radial wave functions, and compared with the values previously obtained by James & 
Brindley, and McWeeny. 

The X-ray form factor for coherent radiation is given 
by (t 

f(s) = t e(r) exp [ is .  r]dvr, (1) 

where ~(r) is the electronic density of the isolated 
atom and s = 4~). -1 sin 0 is the magnitude of the 
vector s in reciprocal space. If the electronic density 
is spherically symmetric (1) reduces to 

f(s) = foU(r)  Sin Sr dr 
sr ' (2) 

where U(r) is the total  radial charge density. James & 
Brindley (1931) (J & B) evaluated (2) for a number 
of atoms, using the Hartree values of U(r) (self- 
consistent field, without exchange). For other atoms, 
for which the Hartree field was not available, they 
resorted to an interpolation. These calculations have 
been extended to higher values of s by Viervoll & 
~grim (1949). 

If the electronic density is aspherical, it is convenient 
to decompose (1) into the separate electronic contri- 
butions. Filled or half-filled sub-shells are spherically 
symmetric and can be treated as in (2), but  odd p 
electrons, d electrons, etc. require special handling: 
For a p electron defined by 

* This work  was suppor ted  in p a r t  by  the  U.S. Office of 
Nava l  Research.  Cont r ibu t ion  No. 1898 f rom the  Gates and  
Crellin Laborator ies .  

~[ General  Electr ic  Company  Predoc tora l  Fel low 1953-1954. 

P(r) cos 0 (3) 
~P = r l 

(where 0 is the polar angle relative to the axis of the 

• f orbital and Pg(r)dr = 1), MeWeeny (1951) (MEW) 
0 

has shown tha t  the transform of (3) by  (1) gives 

fv = f/~' c°s~ O+f~ sin 2 O ,  (4) 

where 0 is the angle between s and the axis of the 
orbital and 

3iSl f~ = ~ P2(r) cos 2 0 sin 0 exp [isr cos 0] dr dOdq~, (5) 

3 
f~ = ~ I l l  p2(r) sinS0 exp [isr cos0] sin2 q) dr dO dq) . (6) 

McWeeny also obtains a 'mean contribution' by aver- 
aging (4) over all directions: 

f;~___ I/'H-J- 2 ~" 3Jv-~Jp" (7) 

Similar quantities f " , f "  and f are defined for the 
whole atom by addition of the respective contributions 
of the individual electrons. McWeeny has applied these 
results to atoms from hydrogen to neon, using the 
approximate variational wave functions obtained in 
analytic form for the ground states by Duneanson & 
Coulson (1944). 

Self-consistent fields, many of which even include 
exchange (the Hartree-Fock calculation), are now 


